Refine Your Search

Topic

Search Results

Technical Paper

Test Method, Simulation and Micro-process Dynamic Model for Noise Analysis of Auto Hydraulic Shock Absorber

2015-06-15
2015-01-2351
In order to measure the noise of auto shock absorbers, a test bench used to detect piston-rod vibration responses of shock absorbers and measuring analyzer named SANTS-I were developed. The vibration response data was detected by bench tests, which shows that there are high-frequency violent peaks on the sine curve of piston-rod oscillating with relative low frequency. In order to explain the interior work dynamic mechanism of shock absorbers, a schematic Micro-process Dynamic Model with 10 steps particularly divided extension and compression stroke in more detail, and dynamic differential equations for each step were presented and discussed. Furthermore, numerical simulation for the inner impacts interaction between piston and damping fluid of hydraulic shock absorber was realized by ADINA software, by the establishment of a gas-liquid two-phase finite element model.
Technical Paper

Research on Manual Transmission Rattle Noise Experiment Technique

2021-04-06
2021-01-0702
Gear rattle noise is one of the important characteristics of manual and dual-clutch transmission,it is generated by the impact of unloaded meshing gear pairs in the transmission due to engine torsional vibration. Based on a front-drive manual transmission and a five dynos drivetrain NVH test bench with high-speed sine wave generator function, this paper designs an experimental program suitable for transmission rattle noise. By driving dynamometer to simulate the torque fluctuation of real engine, the main research is to study the characteristics of the transmission rattle noise under different excitation amplitudes and different excitation frequencies, and the sensitivity of rattle noise under different gears, different oil temperatures, different excitation amplitudes and excitation frequencies is analyzed. Finally, the transmission maps of rattle noise in different gears can be obtained.
Technical Paper

Research on Regenerative Braking Control Strategy under High Charge State Using Prescribed Performance Prediction Control

2022-10-28
2022-01-7041
To reduce the energy consumption level of electric vehicles, the working range of the regenerative braking system will gradually expand to the high state of charge of the battery. The time delay in the control signal transmission path of the high state of charge regenerative braking control process will affect the regenerative braking. At the same time, regenerative braking under a high state of charge puts forward higher requirements for the control accuracy of regenerative current. In the research of this paper, the motor model, battery model, and vehicle dynamics model are firstly established by using MATLAB/Simulink, and the dynamic relationship between regenerative current and regenerative braking torque is analyzed at the same time. Considering the system time delay, this paper proposes a high-charge regenerative braking control strategy (SPPC) that combines Smith prediction and prescribed performance control.
Technical Paper

Research on Factors to Influence Coasting Resistance for Electric Vehicles

2020-04-14
2020-01-1068
The research on coasting resistance is vital to electric vehicles, since the smaller the coasting resistance, the longer the coast-down distance. Vehicle coast resistance consists of rolling resistance, vehicle inner resistance and the aerodynamic drag. The vehicle inner resistance is mainly caused by driveline’s friction loss and oil splash loss. The rolling resistance is decided by tire resistance coefficient, which is influenced by tires and road conditions. And the aerodynamic drag is affected by vehicle’s shape and air. In this paper, four factors including tire pressure, road surface condition, atmosphere temperature, and recirculation on or off are examined. Experimental tests have been conducted on three different vehicles: one subcompact sedan, one compact sedan and one subcompact SUV. Then experimental results have been imported to simulation model to investigate the corresponding influence on NEDC range.
Journal Article

Surface Fatigue Cracking Behavior of a CrN-Coated Tool Steel Influenced by Sliding Cycles and Sliding Energy Density

2017-03-28
2017-01-0303
Light-weighting of vehicles is one of the challenges for transportation industry due to the increasing pressure of demands in better fuel economy and environment protection. Advanced high strength steels (AHSS) are considered as prominent material of choice to realize lightweight auto body and structures at least in near term. Stamping of AHSS with conventional die materials and surface coatings, however, results in frequent die failures and undesired panel surface finish. A chromium nitride (CrN) coating with plasma nitriding case hardened layer on a die material (duplex treatment) is found to offer good wear and galling resistances. The coating failure initiates from fatigue cracking on the coating surface due to cyclic sliding frictions. In this work, cyclic inclined sliding wear test was used to imitate a stamping process for study on development of coating fatigue cracking, including crack length and spacing vs. sliding-cycles and sliding energy densities.
Technical Paper

Load Simulation of the Impact Road under Durability and Misuse Conditions

2023-04-11
2023-01-0775
Road load data is an essential input to evaluate vehicle durability and strength performances. Typically, load case of pothole impact constitutes the major part in the development of structural durability. Meanwhile, misuse conditions like driving over a curb are also indispensable scenarios to complement impact strength of vehicle structures. This paper presents a methodology of establishing Multi-body Dynamics (MBD) full vehicle model in Adams/Car to acquire the road load data for use in durability and strength analysis. Furthermore, load level between durability and misuse conditions of the same Impact road was also investigated to explore the impact due to different driving maneuvers.
X